Integer Points in Knapsack Polytopes and s-Covering Radius
نویسندگان
چکیده
Given a matrix A ∈ Zm×n satisfying certain regularity assumptions, we consider for a positive integer s the set Fs(A) ⊂ Zm of all vectors b ∈ Zm such that the associated knapsack polytope P (A, b) = {x ∈ R>0 : Ax = b} contains at least s integer points. We present lower and upper bounds on the so called diagonal s-Frobenius number associated to the set Fs(A). In the case m = 1 we prove an optimal lower bound for the s-Frobenius number, which is the largest integer b such that P (A, b) contains less than s integer points.
منابع مشابه
Phase Transition in Random Integer Programs
We study integer programming instances over polytopes P (A, b) = {x : Ax ≤ b} where the constraint matrices A are random – the rows of the constraint matrices are chosen i.i.d. from a spherically symmetric distribution. We address the radius of the largest inscribed ball that guarantees integer feasibility of such random polytopes with high probability. We show that for m = 2 √ , there exist co...
متن کاملInteger Feasibility of Random Polytopes
We study integer programming instances over polytopes P (A, b) = {x : Ax ≤ b} where the constraint matrix A is random, i.e., its entries are i.i.d. Gaussian or, more generally, its rows are i.i.d. from a spherically symmetric distribution. The radius of the largest inscribed ball is closely related to the existence of integer points in the polytope. We show that for m = 2 √ , there exist consta...
متن کاملMaximum Entropy Gaussian Approximation for the Number of Integer Points and Volumes of Polytopes
We describe a maximum entropy approach for computing volumes and counting integer points in polyhedra. To estimate the number of points from a particular set X ⊂ Rn in a polyhedron P ⊂ Rn we construct a probability distribution on the set X by solving a certain entropy maximization problem such that a) the probability mass function is constant on the set P ∩X and b) the expectation of the distr...
متن کاملNP-Completeness of Non-Adjacency Relations on Some 0-1 Polytopes
In this paper, we discuss the adjacency structures of some classes of 0-1 polytopes including knapsack polytopes, set covering polytopes and 0-1 polytopes represented by complete sets of implicants. We show that for each class of 0-1 polytope, non-adjacency test problems are NP-complete. For equality constrained knapsack polytopes, we can solve adjacency test problems in pseudo polynomial time.
متن کامل/ On Facets of Knapsack Equality Polytopes
The 0/1 knapsack equality polytope is, by deenition, the convex hull of 0/1 solutions of a single linear equation. A special form of this polytope | where the deening linear equation has nonnegative integer coeecients and the number of variables having co-eecient one exceeds the right-hand-side | is considered. Equality constraints of this form arose in a real-world application of integer progr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 20 شماره
صفحات -
تاریخ انتشار 2013